In Proceedings of the 3rd International Conference on Embedded Software
Philadelphia, PA, pages 306—322, October 13-15, 2@PSpringer-Verlag.

Eliminating stack overflow by abstract interpretation

John Regehr Alastair Reid Kirk Webb

School of Computing, University of Utah

Abstract. An important correctness criterion for software running on embedded
microcontrollers isstack safetya guarantee that the call stack does not over-
flow. We address two aspects of the problem of creating stack-safe embedded
software that also makes efficient use of memory: statically bounding worst-case
stack depth, and automatically reducing stack memory requirements. Our first
contribution is a method for statically guaranteeing stack safety by performing
whole-program analysis, using an approach based on context-sensitive abstract
interpretation of machine code. Abstract interpretation permits our analysis to
accurately model when interrupts are enabled and disabled, which is essential
for accurately bounding the stack depth of typical embedded systems. We have
implemented a stack analysis tool that targets Atmel AVR microcontrollers, and
tested it on embedded applications compiled from up to 30,000 lines of C. We
experimentally validate the accuracy of the tool, which runs in a few seconds
on the largest programs that we tested. The second contribution of this paper is
a novel framework for automatically reducing stack memory requirements. We
show that goal-directed global function inlining can be used to reduce the stack
memory requirements of component-based embedded software, on average, to
40% of the requirement of a system compiled without inlining, and to 68% of the
requirement of a system compiled with aggressive whole-program inlining that is
not directed towards reducing stack usage.

1 Introduction

Inexpensive microcontrollers are used in a wide variety of embedded applications such
as vehicle control, consumer electronics, medical automation, and sensor networks.
Static analysis of the behavior of software running on these processors is important
for two main reasons:

— Embedded systems are often used in safety critical applications and can be hard to
upgrade once deployed. Since undetected bugs can be very costly, it is useful to
attempt to find software defects early.

— Severe constraints on cost, size, and power make it undesirable to overprovision
resources as a hedge against unforeseen demand. Rather, worst-case resource re-
quirements should be determined statically and accurately, even for resources like
memory that are convenient to allocate in a dynamic style.

Without stack bounding With static stack bounding

4 KB 4KB
stack stack
i N worst observed depth i
| true v(;/ors:p upper bound
heap < % epth on stack depth heep
L
true worst case
depth must lie
data, BSS within this range data, BSS
0KB 0KB

Fig. 1. Typical RAM layout for an embedded program with and without stack bounding.
Without a bound, developers must rely on guesswork to determine the amount of storage
to allocate to the stack.

In this paper we describe the results of an experiment in applying static analysis
techniques to binary programs in order to bound and reduce their stack memory re-
quirements. We check embedded programsfack safetythe property that they will
not run out of stack memory at run time. Stack safety, which is not guaranteed by tra-
ditional type-safe languages like Java, is particularly important for embedded software
because stack overflows can easily crash a system. The transparent dynamic stack ex-
pansion that is performed by general-purpose operating systems is infeasible on small
embedded systems due to lack of virtual memory hardware and limited availability of
physical memory. For example, 8-bit microcontrollers typically have between a few
tens of bytes and a few tens of kilobytes of RAM. Bounds on stack depth can also be
usefully incorporated into executable programs, for example to assign appropriate stack
sizes to threads or to provide a heap allocator with as much storage as possible without
compromising stack safety.

The alternative to static stack depth analysis that is currently used in industry is to
ensure that memory allocated to the stack exceeds the largest stack size ever observed
during testing by some safety margin. A large safety margin would provide good in-
surance against stack overflow, but for embedded processors used in products such as
sensor network nodes and consumer electronics, the degree of overprovisioning must
be kept small in order to minimize per-unit product cost. Figure 1 illustrates the rela-
tionship between the testing- and analysis-based approaches to allocating memory for
the stack.

Testing-based approaches to software validation are inherently unreliable, and test-
ing embedded software for maximum stack depth is particularly unreliable because its
behavior is timing dependent: the worst observed stack depth depends on what code
is executing when an interrupt is triggered and on whether further interrupts trigger
before the first returns. For example, consider a hypothetical embedded system where
the maximum stack depth occurs when the following events occur at almost the same
time: 1) the main program summarizes data once a second spending 100 microseconds

at maximum stack depth; 2) a timer interrupt fires 100 times a second spending 100 mi-
croseconds at maximum stack depth; and 3) a packet arrives on a network interface up
to 10 times a second; the handler spends 100 microseconds at maximum stack depth. If
these events occur independently of each other, then the worst case will occur roughly
once every 10 years. This means that the worst case will probably not be discovered
during testing, but will probably occur in the real world where there may be many in-
stances of the embedded system. In practice, the events are not all independent and the
timing of some events can be controlled by the test environment. However, we would
expect a real system to spend less time at the worst-case stack depth and to involve more
events.

Another drawback of the testing-based approach to determining stack depth is that
it treats the system as a black box, providing developers with little or no feedback about
how to best optimize memory usage. Static stack analysis, on the other hand, identifies
the critical path through the system and also the maximum stack consumption of each
function; this usually exposes obvious candidates for optimization.

Using our method for statically bounding stack depth as a starting point, we have
developed a novel way to automatically reduce the stack memory requirement of an em-
bedded system. The optimization proceeds by evaluating the effect of a large number
of potential program transformations in a feedback loop, applying only transformations
that reduce the worst-case depth of the stack. Static analysis makes this kind of opti-
mization feasible by rapidly providing accurate information about a program. Testing-
based approaches to learning about system behavior, on the other hand, are slower and
typically only explore a fraction of the possible state space.

Our work is preceded by a stack depth analysis by Brylow et al. [3] that also per-
forms whole-program analysis of executable programs for embedded systems. How-
ever, while they focused on relatively small programs written by hand in assembly lan-
guage, we focus on programs that are up to 30 times larger, and that are compiled from
Cto a RISC architecture. The added difficulties in analyzing larger, compiled programs
necessitated a more powerful approach based on context-sensitive abstract interpreta-
tion of machine code; we motivate and describe this approach in Section 2. Section 3
discusses the problems in experimentally validating the abstract interpretation and stack
depth analysis, and presents evidence that the analysis provides accurate results. In Sec-
tion 4 we describe the use of a stack bounding tool to support automatically reducing the
stack memory consumption of an embedded system. Finally, we compare our research
to previous efforts in Section 5 and conclude in Section 6.

2 Bounding Stack Depth

Embedded system designers typically try to statically allocate resources needed by the
system. This makes systems more predictable and reliable by providing a priori bounds
on resource consumption. However, an almost universal exception to this rule is that
memory is dynamically allocated on the call stack. Stacks provide a useful model of
storage, with constant-time allocation and deallocation and without fragmentation. Fur-
thermore, the notion of a stack is designed into microcontrollers at a fundamental level.
For example, hardware support for interrupts typically pushes the machine state onto

the stack before calling a user-defined interrupt handler, and pops the machine state
upon termination of the handler. For developers of embedded systems, it is important
not only to know that the stack depth is bounded, but also to have a tight bound — one
that is not much greater than the true worst-case stack depth. This section describes the
whole-program analysis that we use to obtain tight bounds on stack depth.

Our prototype stack analysis tool targets programs for the Atmel AVR, a popular
family of microcontrollers. We chose to analyze binary program images, rather than
source code, for a number of reasons:

— There is no need to predict compiler behavior. Many compiler decisions, such as
those regarding function inlining and register allocation, have a strong effect on
stack depth.

— Inlined assembly language is common in embedded systems, and a safe analysis
must account for its effects.

— The source code for libraries and real-time operating systems are commonly not
available for analysis.

— Since the analysis is independent of the compiler, developers are free to change
compilers or compiler versions. In addition, the analysis is not fragile with respect
to non-standard language extensions that embedded compilers commonly use to
provide developers with fine-grained control over processor-specific features.

— Adding a post-compilation analysis step to the development process presents de-
velopers with a clean usage model.

2.1 Analysis Overview and Motivation

The first challenge in bounding stack depth is to measure the contributions to the stack
of each interrupt handler and of the main program. Since indirect function calls and
recursion are uncommon in embedded systems [4], a callgraph for each entry pointinto
the program can be constructed using standard analysis techniques. Given a callgraph
it is usually straightforward to compute its stack requirement.

The second, more difficult, challenge in embedded systems is accurately estimating
interactions between interrupt handlers and the main program to compute a maximum
stack depth for the whole system. If interrupts are disabled while running interrupt
handlers, one can safely estimate the stack bound of a system contaiimitegrupt
handlers using this formula:

stack bound= depth(main} max depth(interrup)

However, interrupt handlers are often run with interrupts enabled to ensure that other
interrupt handlers are able to meet real-time deadlines. If a system permits at most one
concurrent instance of each interrupt handler, the worst-case stack depth of a system
can be computed using this formula:

stack bound= depth(main) » " depth(interrup)

i=1..n

in r24, O0x3f ; 124 <- CPU status register

cli ; disable interrupts

adc r24, r24 ; carry bit <- prev interrupt status
eor 124, r24 1124 <- 0

adc 124, r24 ; 124 <- carry bit

mov rl8, r24 ; rl8 <- r24

. critical section ...

and rl8, rl8 . test r18 for zero

breq A2 ; if zero, skip next instruction
sei ; enable interrupts

ret ; return from function

Fig. 2. This fragment of assembly language for Atmel AVR microcontrollers motivates
our approach to program analysis and illustrates a common idiom in embedded soft-
ware: disable interrupts, execute a critical section, and then reenable interrupts only if
they had previously been enabled

Unfortunately, as we show in Section 3, this simple formula often provides unneces-
sarily pessimistic answers when used to analyze real systems where only some parts of
some interrupt handlers run with interrupts enabled.

To obtain a safe, tight stack bound for realistic embedded systems, we developed a
two-part analysis. The first must generate an accurate estimate of the state of the proces-
sor's interrupt mask at each point in the program, and also the effect of each instruction
on the stack depth. The second part of the analysis — unlike the first — accounts for
potential preemptions between interrupts handlers and can accurately bound the global
stack requirement for a system.

Figure 2 presents a fragment of machine code that motivates our approach to pro-
gram analysis. Analogous code can be found in almost any embedded system: its pur-
pose is to disable interrupts, execute a critical section that must run atomically with
respect to interrupt handlers, and then reenable interrupts only if they had previously
been enabled. There are a number of challenges in analyzing such code.

First, effects of arithmetic and logical operations must be modeled with enough ac-
curacy to track data movement through general-purpose and special-purpose registers.
In addition, partially unknown data must be modeled. For example, analysis of the code
fragment must succeed even when only a single bit of the CPU status register — the
master interrupt control bit — is initially known.

Second, dead edges in the control-flow graph must be detected and avoided. For ex-
ample, when the example code fragment is called in a context where interrupts are dis-
abled, it is important that the analysis conclude thatstkie instruction is not executed
since this would pollute the estimate of the processor state at subsequent addresses.

Finally, to prevent procedural aliasing from degrading the estimate of the machine
state, a context sensitive analysis must be used. For example, in some systems the code

0 1 and or xor merge
\/ |10L |10L |1 0L |1 0L
1{1 0L 11111 1{0 1 L 111 1L

L
0|000 0(10L 0/10L 0o/|LO0L
(a) Lattice foreach 1|1 01 1Ll el NN NN
bit in the machine
state (b) Logical operations on abstract bits and combining

machine states at merge points

Fig. 3. Modeling machine states and operations in the abstract interpretation

in Figure 2 is called with interrupts disabled by some parts of the system and is called
with interrupts enabled by other parts of the system. With a context-insensitive ap-
proach, the analysis concludes that since the initial state of the interrupt flag can vary,
the final state of the interrupt flag can also vary and so analysis of both callers of the
function would proceed with the interrupt flag unknown. This can lead to large over-
estimates in stack bounds since unknown values are propagated to any code that could
execute after the call. With a context-sensitive analysis the two calls are analyzed sepa-
rately, resulting in an accurate estimate of the interrupt state.

The next section describes the abstract interpretation we have developed to meet
these challenges.

2.2 Abstracting the Processor State

The purpose of our abstract interpretation is to generate a safe, precise estimate of the
state of the processor at each point in the program; this is a requirement for finding
a tight bound on stack depth. Designing the abstract interpretation boils down to two
main design decisions.

First, how much of the machine state should the analysis model? For programs that
we have analyzed, it is sufficient to model the program counter, general-purpose regis-
ters, and several I/O registers. Atmel AVR chips contain 32 general-purpose registers
and 64 1/O registers; each register stores eight bits. From the I/O space we model the
registers that contain interrupt masks and the processor status register. We do not model
main memory or most I/O registers, such as those that implement timers, analog-to-
digital conversion, and serial communication.

Second, what is the abstract model for each element of machine state? We chose
to model the machine at the bit level to capture the effect of bitwise operations on the
interrupt mask and condition code register — we had initially attempted to model the
machine at word granularity and this turned out to lose too much information through
conservative approximation. Each bit of machine state is modeled using the lattice de-
picted in Figure 3(a). The lattice contains the values 0 and 1 as well as a bottom element,
L, that corresponds to a bit that cannot be proven to have value 0 or 1 at a particular
program point.

Figure 3(b) shows abstractions of some common logical operators. Abstractions of
operators should always return a result that is as accurate as possible. For example,

when all bits of the input to an instruction have the value 0 or 1, the execution of the
instruction should have the same result that it would have on a real processor. In this
respect our abstract interpreter implements most of the functionality of a standard CPU
simulator.

For example, when executing thed instruction with{1,1,0,0,1,1,0,0} as one
argumentand_L, L, 1, 1,1,1,1, 1} asthe other argument, the result register will con-
tain the valug{ L, 1,0,0,1,1,0,0}. Arithmetic operators are treated similarly, but re-
quire more care because bits in the result typically depend on multiple bits in the input.
Furthermore, the abstract interpretation must take into account the effect of instructions
on processor condition codes, since subsequent branching decisions are made using
these values.

The example in Figure 2 illustrates two special cases that must be accounted for
in the abstract interpretation. First, the add-with-carry instruciido, when both of
its arguments are the same register, acts as rotate-left-through-carry. In other words, it
shifts each bit in its input one position to the left, with the leftmost bit going into the
CPU's carry flag and the previous carry flag going into the rightmost bit. Second, the
exclusive-or instructioeor , when both of its arguments are the same register, acts like
a clear instruction — after its execution the register is known to contain all zero bits
regardless of its previous contents.

2.3 Managing Abstract Processor States

An important decision in designing the analysis was when to create a copy of the ab-
stract machine state at a particular program point, as opposed to merging two abstract
states. The merge operator, shown in Figure 3(b), is lossy since a conservative approx-
imation must always be made. We have chosen to implement a context-sensitive anal-
ysis, which means that we fork the machine state each time a function call is made,
and at no other points in the program. This has several consequences. First, and most
important, it means that the abstract interpretation is not forced to make a conservative
approximation when a function is called from different points in the program where the
processor is in different states. In particular, when a function is called both with inter-
rupts enabled and disabled, the analysis is not forced to conclude that the status of the
interrupt bit is unknown inside the function and upon return from it. Second, it means
that we cannot show termination of a loop implemented within a function. This is nota
problem at present since loops are irrelevant to the stack depth analysis as long as there
is no net change in stack depth across the loop. However, it will become a problem if we
decide to push our analysis forward to bound heap allocation or execution time. Third,

it means that we can, in principle, detect termination of recursion. However, our current
implementation rarely does so in practice because most recursion is bounded by values
that are stored on the stack — which our analysis does not model. Finally, forking the
state at function calls means that the state space of the stack analyzer might become
large. This has not been a problem in practice; the largest programs that we have ana-
lyzed cause the analyzer to allocate about 140 MB. If memory requirements become a
problem for the analysis, a relatively simple solution would be to merge program states
that are identical or that are similar enough that a conservative merging will result in
minimal loss of precision.

2.4 Abstract Interpretation and Stack Analysis Algorithms

The program analysis begins by initializing a worklist with all entry points into the
program; entry points are found by examining the vector of interrupt handlers that is
stored at the bottom of a program image, which includes the address of a startup routine
that eventually jumps tmain() . For each item in the worklist, the analyzer abstractly
interprets a single instruction. If the interpretation changes the state of the processor at
that program point, items are added to the worklist corresponding to each live control
flow edge leaving the instruction. Termination is assured because the state space for a
program is finite and because we never revisit states more than once.

The abstract interpretation detects control-flow edges that are dead in a particular
context, and also control-flow edges that are dead in all contexts. In many systems we
have analyzed, the abstract interpretation finds up to a dozen branches that are provably
not taken. This illustrates the increased precision of our analysis relative to the dataflow
analysis that an optimizing compiler has previously performed on the embedded pro-
gram as part of a dead code elimination pass.

In the second phase, the analysis considers there to be a control flow edge from
every instruction in the program to the first instruction of every interrupt handler that
cannot be proven to be disabled at that program point. An interrupt is disabled if either
the master interrupt bit is zero or the enable bit for the particular interrupt is zero. Once
these edges are known, the worst-case stack depth for a program can be found using the
method developed by Brylow et al. [3]: perform a depth-first search over control flow
edges, explicit and implicit, keeping track of the effect of each instruction on the stack
depth, and also keeping track of the largest stack depth seen so far.

A complication that we have encountered in many real programs is that interrupt
handlers commonly run with all interrupts enabled, admitting the possibility that a new
instance of an interrupt handler will be signaled before the previous instance terminates.
From an analysis viewpoint reentrant interrupt handlers are a serious problem: systems
containing them cannot be proven to be stack-safe without also reasoning about time.
In effect, the stack bounding problem becomes predicated on the results of a real-time
analysis that is well beyond the current capabilities of our tool.

In real systems that we have looked at reentrant interrupt handlers are so common
that we have provided a facility for working around the problem by permitting a de-
veloper to manually assert that a particular interrupt handler can preempt itself only up
to a certain number of times. Programmers appear to commonly rely on ad hoc real-
time reasoning, e.g., “this interrupt only arrives 10 times per second and so it cannot
possibly interrupt itself.” In practice, most instances of this kind of reasoning should
be considered to be design flaws — few interrupt handlers are written in a reentrant
fashion so it is usually better to design systems where concurrent instances of a single
handler are not permitted. Furthermore, stack depth requirements and the potential for
race conditions will be kept to a minimum if there are no cycles in the interrupt preemp-
tion graph, and if preemption of interrupt handlers is only permitted when necessary to
meet a real-time deadline.

2.5 Other Challenges

In this section we address other challenges faced by the stack analysis tool: loads into
the stack pointer, self-modifying code, indirect branches, indirect stores, and recursive
function calls. These features can complicate or defeat static analysis. However, em-
bedded developers tend to make very limited use of them, and in our experience static
analysis of real programs is still possible and, moreover, effective.

We support code that increments or decrements the stack pointer by constants, for
example to allocate or deallocate function-scoped data structures. Code that adds non-
constants to the stack pointer (e.g., to allocate variable sized arrays on the stack) would
require some extra work to bound the amount of space added to the stack. We also do
not support code that changes the stack pointer to new values in a more general way, as
is done in the context switch routine of a preemptive operating system.

The AVR has a Harvard architecture, making it possible to prove the absence of
self-modifying code simply by ensuring that a program cannot reach a “store program
memory” instruction. However, by reduction to the halting problem, self-modifying
code cannot be reliably detected in the general case. Fortunately, use of self-modifying
code is rare and discouraged — it is notoriously difficult to understand and also pre-
cludes reducing the cost of an embedded system by putting the program into ROM.

Our analysis must build a conservative approximation of the program'’s control flow
graph. Indirect branches cause problems for program analysis because it can be diffi-
cult to tightly bound the set of potential branch targets. Our approach to dealing with
indirect branches is based on the observation that they are usually used in a structured
way, and the structure can be exploited to learn the set of targets. For example, when
analyzing TinyOS [6] programs, the argument to the funcli@Bpost is usually a
literal constant representing the address of a function that will be called by an event
scheduling loop. The value of the argument is identified by abstract interpretation, but
the connection between posting an event and making the indirect call must be estab-
lished manually. Making it easier to express such connections is an area of future work.

The stack analysis cannot deal with the form of indirect branch found in the context
switch routine of a preemptive real-time operating system — the set of potential targets
is too large. However, these branches need not be analyzed: since switching context to
a new thread involves a change to a completely separate stack, it suffices to learn the
worst-case stack usage of the operating system code and add it to the worst-case stack
usage for each thread.

Memory writes can compromise our static analysis in two ways. First, an out-of-
bounds store may overwrite a return address on the call stack, causing the program to
return to an unforeseen location. Second, since the AVR maps its registers into low
memory, a stray write could change a register in a way invisible to the analysis. We deal
with direct stores by ensuring that they reference an appropriate range of RAM that is
not occupied by the registers or call stack. Indirect stores are simply assumed not to
overwrite a register or return address; our rationale is that a program containing this
behavior is so flawed that its stack safety is irrelevant. In the long run a better solution
would be to construct embedded software in a type-safe language.

Recursive code is uncommon in embedded software. For example, Engblom [4]
studied a collection of embedded systems containing over 300,000 lines of C code, and

it contained only 14 recursive loops. Our approach to dealing with recursion, therefore,
is blunt: we require that developers explicitly specify a maximum iteration count for
each recursive loop in a system. The analysis returns an unbounded stack depth if the
developers neglect to specify a limit for a particular loop.

It would be straightforward to port our stack analyzer to other processors: the anal-
ysis algorithms, such as the whole-program analysis for worst-case stack depth, operate
on an abstract representation of the program that is not processor dependent. However,
the analysis would return pessimistic results for register-poor architectures such as the
Motorola 68HC11, since code for those processors makes significant use of the stack,
and stack values are not currently modeled by our tool. In particular, we would proba-
bly not obtain precise results for code equivalent to the code in Figure 2 that we used
to motivate our approach. To handle register-poor architectures we are developing an
approach to modeling the stack that is based on a simple type system for registers that
are used as pointers into stack frames.

2.6 Using the Stack Tool

We have a prototype tool that implements our stack depth analysis. In its simplest mode
of usage, the stack tool returns a single number: an upper bound on the stack depth for
a system. For example:

$.Istacktool -w flybywire.elf
total stack requirement from global analysis = 55

To make the tool more useful we provide a number of extra features, including
switching between context-sensitive and context-insensitive program analysis, creating
a graphical callgraph for a system, listing branches that can be proven to be dead in all
contexts, finding the shortest path through a program that reaches the maximum stack
depth, and printing a disassembled version of the embedded program with annotations
indicating interrupt status and worst-case stack depth at each instruction. These are all
useful in helping developers understand and manually reduce stack memory consump-
tion in their programs.

There are other obvious ways to use the stack tool that we have not yet implemented.
For example, using stack bounds to compute the maximum size of the heap for a sys-
tem so that it stops just short of compromising stack safety, or computing a minimum
safe stack size for individual threads in a multi-threaded embedded system. Ideally, the
analysis would become part of the build process and values from the analysis would be
used directly in the code being generated.

3 Validating the Analysis

We used several approaches to increase our confidence in the validity of our analysis
techniques and their implementations.

10

3.1 \Validating the Abstract Interpretation

To test the abstract interpretation, we modified a simulator for AVR processors to dump
the state of the machine after executing each instruction. Then, we created a separate
program to ensure that this concrete state was “within” the conservative approximation
of the machine state produced by abstract interpretation at that address, and that the
simulator did not execute any instructions that had been marked as dead code by the
static analysis. During early development of the analysis this was helpful in finding bugs
and in providing a much more thorough check on the abstract interpretation than manual
inspection of analysis results — our next-best validation technique. We have tested the
current version of the stack analysis tool by executing at least 100,000 instructions of
about a dozen programs, including several that were written specifically to stress-test
the analysis, and did not find any discrepancies.

3.2 Validating Stack Bounds

There are two important metrics for validating the bounds returned by the stack tool.
The first is qualitative: Does the tool ever return an unsafe result? Testing the stack tool
against actual execution of about a dozen embedded applications has not turned up any
examples where it has returned a bound that is less than an observed stack depth. This
justifies some confidence that our algorithms are sound.

Our second metric is quantitative: Is the tool capable of returning results that are
close to the true worst-case stack depth for a system? The maximum observed stack
depth, the worst-case stack depth estimate from the stack tool, and the (non-computable)
true worst-case stack depth are related in this way:

worst observed true worst< estimated worst

One might hope that the precision of the analysis could be validated straightfor-
wardly by instrumenting some embedded systems to make them report their worst ob-
served stack depth and comparing these values to the bounds on stack depth. For several
reasons, this approach produces maximum observed stack depths that are significantly
smaller than the estimated worst case and, we believe, the true worst case. First, the
timing issues that we discussed in Section 1 come into play, making it very hard to ob-
serve interrupt handlers preempting each other even when it is clearly possible that they
may do so. Second, even within the main function and individual interrupt handlers, it
can be very difficult to force an embedded system to execute the code path that pro-
duces the worst-case stack depth. Embedded systems often present a narrower external
interface than do traditional applications, and it is correspondingly harder to force them
to execute certain code paths using test inputs. While the difficulty of thorough test-
ing is frustrating, it does support our thesis that static program analysis is particularly
important in this domain.

The 71 embedded applications that we used to test our analysis come from three
families. The first is Autopilot, a simple cyclic-executive style control program for an
autonomous helicopter [10]. The second is a collection of application programs that are
distributed with TinyOS version 0.6.1, a small operating system for networked sensor

11

nodes. The third is a collection of application programs that are distributed with TinyOS
1.0 [6]. Version 1.0 is a complete rewrite of TinyOS using nesC [5], a programming
language very similar to C that is compiled by translating into C. All programs were
compiled from C using gcc version 3.0.2 or 3.1.1, and all target the ATmegal03 chip,
a member of the Atmel AVR family that contains 4 KB of RAM and 128 KB of flash
memory.

3.3 \Validating Analysis of Individual Interrupts

To quantitatively evaluate the stack tool, we wrote a program that modifies the assembly
language version of an AVR program in such a way that each interrupt is handled on
its own stack. This makes stack measurement timing-independent, but still leaves the
difficult problem of making the main function and each interrupt handler execute the
path to the worst-case stack depth.

We found that a perfect match between predicted and actual stack depth could only
be obtained for slightly modified versions of simple embedded applications such as the
BlinkTask TinyOS kernel whose function is to flash an LED. Even for this exam-
ple, we were forced to comment out a call to a function supporting one-shot timers in
a timer module: it contributed to the worst-case stack depth, but could never be called
in our system. After making this small modification and adding serial-line driver code
to enable reporting of stack depths to a separate computeBlitiicTask applica-
tion contained about 4000 lines of C code, even after a dead-code elimination pass
performed by nesC. Running the stack analysis on this modified kernel produced the
following results:

Stack depths:
vector 0 main = 33, at d30

vector 15 _output_compare0_ = 32, at 50a
vector 18 _uart_recv_ = 27, at 3e8
vector 20 _uart_trans_ = 23, at a90

This shows the estimated worst-case stack depth of each entry point into the pro-
gram and also an address at which this depth is reached. We then ran this kernel on an
AVR processor and queried it to learn the worst observed stack depth; it reported the
same stack depths as the analysis reported.

3.4 Evaluating the Global Analysis

Of the 71 applications used to test our analysis, there are seven that defeat our analysis
tool, for example because they make an indirect jump based on a value that is not a
literal constant, or they load an indeterminate value into the stack pointer. We believe
that some of these applications could be successfully analyzed by a slightly improved
version of our stack tool, but for now we disregard them.

The stack analysis results from the remaining 64 kernels are too large to display in
a figure so we have chosen, at random, 15 TinyOS 0.6.1 applications and 15 TinyOS
1.0 applications and displayed them in Figure 4. Analysis of the results for all 64 ap-
plications shows that on average, the context insensitive global analysis returns a stack
bound that is 15% lower than the bound determined by summing the requirements of

12

300 o Summation of interrupts
] m Global context insensitive analysis
® m Global context sensitive analysis
S
2]
T 200 i
S]]
o -
m
<]
58' 100 4
5]
©]
" A
0- [NERDA R O= £ Q ERO0NX VX RNAT >y
s PEcESEUBSTCEENE pEBRRIiBEgTAScE
e I D = §t a0 GSgN o0 ESE
S 52882838 82 ="¢ 35ERy §TF £ 258
= E|8§IE“§'§EB 5 {6; S § |—Q‘§ R = %I—
Autopilot £ § Tiny0S 0.6.1 o TinyOS 1.0
5
o

Fig. 4. Comparing stack bounds for summation of interrupts, global context insensitive
analysis, and context sensitive analysis

interrupt handlers and the main function, and that on average the context sensitive anal-
ysis returns a bound that is 35% lower than the bound computed by summing interrupts.

Another metric that can be used to compare the context sensitive and insensitive
analyses is the number of instructions for which each method fails to identify a con-
crete interrupt mask. The context insensitive analysis was unable to identify a concrete
interrupt mask for 41% of the instructions in a given kernel, on average. The context
sensitive analysis, on the other hand, failed to identify a concrete value for the interrupt
mask for only 2.2% of instructions, which mostly fall into two categories. First, instruc-
tions whose interrupt mask would become analyzable if the call stack were modeled.
Second, instructions whose interrupt mask is genuinely ambiguous — within a single
context they can be shown to execute both with interrupts disabled and enabled.

Since increased precision in the analysis translates directly into memory savings
for embedded developers, we believe that the added complexity of the context-sensitive
analysis is justified. In most cases where the more powerful analysis did not decrease the
stack bound — for example, the Autopilot application — there was simply nothing that
the tool could do: these applications run all interrupt handlers with interrupts enabled,
precluding tight bounds on stack depth. Finally, the stack depth analysis requires less
than four seconds of CPU time on a 1.4 GHz Athlon for all of our example programs,
and for many applications it requires well under one second.

13

optimized
source _
program | > compiler ——>= stack-depth 1 > program
estimator image
k program)
transformer

Fig. 5. Overview of stack depth reduction

4 Reducing Stack Depth

Previous sections described and evaluated a tool for bounding stack depth. In this sec-
tion we go a step further by exploring the use of the stack bounding tool as an essential
part of a method for automatically reducing the stack memory requirements of em-
bedded software. Reducing stack depth is useful because it potentially frees up more
storage for the heap, permits more threads to be run on a given processor, or permits a
product to be based on a less expensive CPU with fewer on-chip resources.

The basic observation that makes stack minimization possible is that given a way
to quickly and accurately bound the stack depth of a program, it becomes possible for
a compiler or similar tool to rapidly evaluate the effect of a large number of program
transformations on the stack requirements of a system. We then choose to apply only
the transformations that improve stack memory usage.

Figure 5 illustrates our approach to automatic stack depth reduction. Although this
technique is generic and would admit a variety of program transformations, so far the
only transformation we have experience with is global function inlining. Inlining is a
common optimization that replaces a function call with a copy of the function body. The
immediate effect of function inlining on stack usage is to avoid the need to push a re-
turn address and function arguments onto the stack. More significantly, inlining allows
intraprocedural optimizations to apply which may simplify the code to the extent that
fewer temporary variables are required, which may further reduce stack usage. Inlin-
ing also allows better register allocation since the compiler considers the caller and the
callee simultaneously instead of separately. In general, inlining needs to be used spar-
ingly. If a function is inlined many times, the size of the compiled binary can increase.
Furthermore, aggressive inlining can actually increase stack memory requirements by
overloading the compiler’s register allocator. In previous work [11], we developed a
global function inliner for C programs that can perform inlining on complete programs
instead of within individual C files. To support the work reported in this paper, we
modified this inliner to accept an explicit list of callgraph edges to inline.

To reduce the stack depth requirements of an embedded system we perform a heuris-
tic search that attempts to minimize ttastof a program, where cost is a user-supplied
function of stack depth and code size. For example, one obvious cost function mini-
mizes stack depth without regard to code size. Another useful cost function is willing
to trade one byte of stack memory for 32 bytes of code memory, since the processors
we currently use have 32 times more code memory than data memory.

14

13000

12000 O maximum inlining

11000 |-
g different tradeoffs in jointly
< 10000 |- minimizing stack size and code size
Q
© 9000 | ° //
@ © no inlinin
3 8000 g
g “

7000 - ¢

“n © nesC
6000 -
5000 1 1 1 1 1 J

75 100 125 150 175 200 225
upper bound on stack size (bytes)

Fig. 6. Comparing stack reduction tradeoffs with default compilation methods for an
example TinyOS kernel. Note that the origin of the graph is not at 0, O.

Systems that we have analyzed contain between 80 and 670 callgraph edges that
could be inlined, leading in the worst case28° possible inlining decisions. Since
this space obviously cannot be searched exhaustively, we use a heuristic search. We
have found that an effective approach is to bound the degree of inlining “from above”
and “from below” and then perform a random search of the space in between. Mini-
mizing code size is often best accomplished by starting with no functions inlined and
then repeatedly picking an uninlined function and inlining it only if this improves the
cost metric. Minimizing stack depth, on the other hand, is often best accomplished by
starting with all functions inlined and then repeatedly picking an inlined function and
dropping the inlining if this improves the cost metric. To see why this is more effective
at reducing stack depth, consider a system where there are two paths to the maximum
stack depth. Separately considering inlining decisions on either path will not improve
the stack depth: it is only by considering both inlinings at once that their benefit is seen.

Having found upper and lower bounds on the inlining decisions, we search the space
between the bounds by accepting inlinings where the previous solutions agreed, and
then repeatedly test inlinings that they disagreed on. In practice this step often finds
solutions missed by the previous two steps.

Figure 6 shows the results of applying the stack depth / code size reduction algo-
rithm to the TinyOS kerneCntToLedsAndRfm . There are three data points corre-
sponding respectively to a system compiled without any function inlining, to a system
compiled with as much inlining as possible (subject to limitations on inlining recur-
sive functions and indirect calls), and to a system compiled by the nesC compiler [5],
which performs fairly aggressive global function inlining on its own. The remaining
data points were collected by running our stack reduction algorithm with a variety of
cost functions ranging from those that gave high priority to reducing stack depth to
those that gave high priority to reducing code size. These results are typical: we applied
stack depth reduction to a number of TinyOS kernels and found that we could usually

15

use about 40% of the stack required by a kernel without any inlining, and about 68% of
the stack required by kernels compiled using nesC.

5 Related Work

The previous research most closely related to our work is the stack depth analysis by
Brylow et al. [3]. Their analysis was designed to handle programs written by hand that
are on the order of 1000 lines of assembly language; the programs we analyze, on the
other hand, are compiled and are up to 30 times larger. Their contribution was to model
interrupt-driven embedded systems, but their method could only handle immediate val-
ues loaded into the interrupt mask register — an ineffective technique when applied to
software where all data, including interrupt masks, moves through registers. Our work
goes well beyond theirs through its use of an aggressive abstract interpretation of ALU
operations, conditional branches, etc. to track the status of the interrupt mask.

Palsberg and Ma [9] provide a calculus for reasoning about interrupt-driven systems
and a type system for checking stack boundedness. Like us, they provide a degree of
context sensitivity (in their type system this is encoded using intersection types). Unlike
us, they model just the interrupt mask register, which would prevent them from accu-
rately modeling our motivating example in Figure 2. The other major difference is that
their focus is on the calculus and its formal properties and so they restrict their attention
to small examples (10-15 instructions) that can be studied in detail, and they restrict
themselves to a greatly simplified language that lacks pointers and function calls.

AbsInt makes a commercial product called StackAnalyzer [1]; its goal is to estimate
stack depth in embedded software. We were not able to find much information about
this tool. In particular, there is no indication that it is attempting to model the status of
the interrupt mask, the most important feature of our analysis.

Our abstract interpretation is largely a combination of standard techniques. Java vir-
tual machines perform an intraprocedural stack depth analysis [8], and program mod-
eling at the bit-level has been done before (see, for example, the discussion of possible
lattices for MIT’s Bitwise project [12]). Our contribution here lies in determining which
combination of techniques obtains good results for our particular problem.

Functioninlining has traditionally been viewed as a performance optimization [2] at
the cost of a potentially large increase in code size. More recent work [7] has examined
the use of inlining as a technique to reduce both code size and runtime. We are not aware
of any previous work that uses function inlining specifically to reduce stack size or, in
fact, of any previous work on automatically reducing the stack memory requirements
of embedded software.

6 Conclusion

The potential for stack overflow in embedded systems is hard to detect by testing. We
have developed a static analysis that can prove that an embedded system will not over-
flow its stack, and demonstrated that the analysis provides accurate results. Experiments
show that modeling the enabling and disabling of interrupt handlers using context sen-
sitive abstract interpretation produces estimates that are an average of 35% lower than

16

estimates produced using the simpler approach of summing the stack requirements of
interrupt handlers and the main function. We have also demonstrated a novel use of
this analysis to drive a search for function inlining decisions that reduce stack depth.
Experiments on a number of component-based embedded applications show that this
approach reduces stack memory requirements by an average of 32% compared with
aggressive global inlining without the aid of a stack depth analysis.

Availability: Source code for the stack analyzer is available uhtter//www.
cs.utah.edu/flux/stacktool , and the global inliner can be downloaded from
http://www.cs.utah.edu/flux/alchemy/software.html

Acknowledgments: The authors would like to thank Dennis Brylow, Eric Eide,
Matthew Flatt, Wilson Hsieh, Jay Lepreau, and Michael Nahas for providing helpful
feedback on drafts of this paper.

References

1. Absint. StackAnalyzemttp://www.absint.com/stackanalyzer

2. Andrew Ayers, Robert Gottlieb, and Richard Schooler. Aggressive |n||n|n§rdo of
Programming Language Design and Implementatjmges 134-145, Las Vegas, NV, June
1997.

3. Dennis Brylow, Niels Damgaard, and Jens Palsberg. Static checking of interrupt-driven
software. InProc. of the 23rd Intl. Conf. on Software Engineeripgges 47-56, Toronto,
Canada, May 2001.

4. Jakob Engblom. Static properties of commercial embedded real-time programs, and their
implication for worst-case execution time analysisPhoc. of the 5th IEEE Real-Time
Technology and Applications Sym@ancouver, Canada, June 1999.

5. David Gay, Phil Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler. The
nesC language: A holistic approach to networked embedded systeaclrof
Programming Language Design and Implementatjmages 1-11, San Diego, CA, June
2003.

6. Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister.
System architecture directions for networked sensorBrae. of the 9th Intl. Conf. on
Architectural Support for Programming Languages and Operating Sysieames 93-104,
Cambridge, MA, November 2000.

7. Rainer Leupers and Peter Marwedel. Function inlining under code size constraints for
embedded processors. Pnoc. of the International Conference on Computer-Aided Design
pages 253-256, San Jose, CA, November 1999.

8. Tim Lindholm and Frank YellinThe Java Virtual Machine Specificatioihe Java Series.
Addison-Wesley, January 1997.

9. Jens Palsberg and Di Ma. A typed interrupt calculu€?rc. of Formal Techniques in
Real-Time and Fault-Tolerant Systenaslume 2469 ot ecture Notes in Computer Science
pages 291-310. Springer Verlag, 2002.

10. The Autopilot Projecthttp://autopilot.sourceforge.net

11. Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, and Eric Elde Knit: Component
composition for systems software. Rroc. of the 4th Symp. on Operating Systems Design
and Implementatiompages 347-360, San Diego, CA, October 2000.

12. Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bitwidth analysis with
application to silicon compilation. IRroc. of Programming Language Design and
Implementationpages 108-120, Vancouver, Canada, June 2000.

17

